1,880 research outputs found

    Adjoint characteristic decomposition of one-dimensional waves

    Get PDF
    Adjoint methods enable the accurate calculation of the sensitivities of a quantity of interest. The sensitivity is obtained by solving the adjoint system, which can be derived by continuous or discrete adjoint strategies. In acoustic wave propagation, continuous and discrete adjoint methods have been developed to compute the eigenvalue sensitivity to design parameters and passive devices (Aguilar, J. G. et al, 2017, J. Computational Physics, vol. 341, 163-181). In this short communication, it is shown that the continuous and discrete adjoint characteristic decompositions, and Riemann invariants, are connected by a similarity transformation. The results are shown in the Laplace domain. The adjoint characteristic decomposition is applied to a one-dimensional acoustic resonator, which contains a monopole source of sound. The proposed framework provides the foundation to tackle larger acoustic networks with a discrete adjoint approach, opening up new possibilities for adjoint-based design of problems that can be solved by the method of characteristics

    On indirect noise in multicomponent nozzle flows

    Get PDF
    A one-dimensional, unsteady nozzle flow is modelled to identify the sources of indirect noise in multi-component gases. First, from non-equilibrium thermodynamics relations, it is shown that a compositional inhomogeneity advected in an accelerating flow is a source of sound induced by inhomogeneities in the mixture (i) chemical potentials and (ii) specific heat capacities. Second, it is shown that the acoustic, entropy and compositional linear perturbations evolve independently from each other and they become coupled through mean-flow gradients and/or at the boundaries. Third, the equations are cast in invariant formulation and a mathematical solution is found by asymptotic expansion of path-ordered integrals with an infinite radius of convergence. Finally, the transfer functions are calculated for a supersonic nozzle with finite spatial extent perturbed by a methane-air compositional inhomogeneity. The proposed framework will help identify and quantify the sources of sound in nozzles with relevance, for example, to aeronautical gas turbines.The author is supported by the Royal Academy of Engineering Research Fellowships Scheme

    Global modes, receptivity, and sensitivity analysis of diffusion flames coupled with duct acoustics

    Get PDF
    In this theoretical and numerical paper, we derive the adjoint equations for a thermo-acoustic system consisting of an infinite-rate chemistry diffusion flame coupled with duct acoustics. We then calculate the thermo-acoustic system's linear global modes (i.e. the frequency/growth rate of oscillations, together with their mode shapes), and the global modes' receptivity to species injection, sensitivity to base-state perturbations, and structural sensitivity to advective-velocity perturbations. We then compare these with the Rayleigh index. The receptivity analysis shows the regions of the flame where open-loop injection of fuel or oxidizer will have most influence on the thermo-acoustic oscillation. We find that the flame is most receptive at its tip. The base-state sensitivity analysis shows the influence of each parameter on the frequency/growth rate. We find that perturbations to the stoichiometric mixture fraction, the fuel slot width, and the heat-release parameter have most influence, while perturbations to the P\'eclet number have least influence. These sensitivities oscillate: e.g. positive perturbations to the fuel slot width either stabilizes or destabilizes the system, depending on the operating point. This analysis reveals that, as expected from a simple model, the phase delay between velocity and heat-release fluctuations is the key parameter in determining the sensitivities. It also reveals that this thermo-acoustic system is exceedingly sensitive to changes in the base state. The structural-sensitivity analysis shows the influence of perturbations to the advective flame velocity. The regions of highest sensitivity are around the stoichiometric line close to the inlet, showing where velocity models need to be most accurate.This work is supported by the European Research Council through Project ALORS 2590620.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2014.32

    Adjoint-based linear analysis in reduced-order thermo-acoustic models

    Get PDF
    This paper presents the linear theory of adjoint equations as applied to thermo-acoustics. The purpose is to describe the mathematical foundations of adjoint equations for linear sensitivity analysis of thermo-acoustic systems, recently developed by Magri and Juniper (J. Fluid Mech. (2013), vol. 719, pp. 183--202). This method is applied pedagogically to a damped oscillator, for which analytical solutions are available, and then for an electrically heated Rijke tube with a mean-flow temperature discontinuity induced by the compact heat source. Passive devices that most affect the growth rate / frequency of the electrical Rijke-tube system are presented, including a discussion about the effect of modelling the mean-flow temperature discontinuity.L.M.’s PhD is supported by the European Research Council through Project ALORS 2590620. The Cambridge Philosophical Society (UK) is gratefully acknowledged for having partially covered travel costs for n3l conference, 2013.This is the final published version. It first appeared at http://multi-science.metapress.com/content/h751237233508647/?p=e2821b43d67e47229c5304862df2adce&pi=1

    BENDING THE DOMING EFFECT IN STRUCTURE FROM MOTION RECONSTRUCTIONS THROUGH BUNDLE ADJUSTMENT

    Get PDF
    Structure from Motion techniques provides low-cost and flexible methods that can be adopted in arial surveying to collect topographic data with accurate results. Nevertheless, the so-called "doming effect", due to unfortunate acquisition conditions or unreliable modeling of radial distortion, has been recognized as a critical issue that disrupts the quality of the attained 3D reconstruction. In this paper we propose a novel method, that works effectively in the presence of a nearly flat soil, to tackle a posteriori the doming effect: an automatic ground detection method is used to capture the doming deformation flawing the reconstruction, which in turn is wrapped to the correct geometry by iteratively enforcing a planarity constraint through a Bundle Adjustment framework. Experiments on real word datasets demonstrate promising results

    Electron drift velocity measurements in liquid krypton–methane mixtures

    Get PDF
    Abstract Electron drift velocities have been measured in liquid krypton, pure and mixed with methane at different concentrations (1–10% in volume) versus electric field strength, and a possible effect of methane on electron lifetime has been investigated. While no effect on lifetime could be detected, since lifetimes were in all cases longer than what measurable, a very large increase in drift velocity (up to a factor 6) has been measured

    Quasi-BiHamiltonian Systems and Separability

    Full text link
    Two quasi--biHamiltonian systems with three and four degrees of freedom are presented. These systems are shown to be separable in terms of Nijenhuis coordinates. Moreover the most general Pfaffian quasi-biHamiltonian system with an arbitrary number of degrees of freedom is constructed (in terms of Nijenhuis coordinates) and its separability is proved.Comment: 10 pages, AMS-LaTeX 1.1, to appear in J. Phys. A: Math. Gen. (May 1997

    Compositional inhomogeneities as a source of indirect combustion noise

    Get PDF
    The generation of indirect combustion noise by compositional inhomogeneities is examined theoretically. For this, the compact nozzle theory of~\cite{MARBLE_CANDEL_JSV1977} is extended to a multi-component gas mixture, and the chemical potential function is introduced as an additional acoustic source mechanism. Transfer functions for subcritical and supercritical nozzle flows are derived and the contribution of compositional noise is compared to entropy noise and direct noise by considering an idealized nozzle downstream of the combustor exit. It is shown that compositional noise is dependent on the local mixture composition and can exceed entropy noise for fuel-lean conditions and supercritical nozzle flows. This suggests that the compositional indirect noise requires potential consideration with the implementation of low-emission combustors.Financial support through NASA with award number NNX15AV04A and the Ford–Stanford Alliance project no. C2015-0590 is gratefully acknowledged.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.39
    • …
    corecore